
I meant that tables you generated above were great... But in the expected output, why
not use the * and bullet points to represent existing frontal padding(*) and bullet point
for padding And re-generate the tables

ChatGPT said:

Perfect — I will regenerate all tables, but now:

• Existing frontal padding = *

• Inter-word justification padding = ·

• Width = 16 characters

• EVERY expected output will show the REAL formatted line, exactly 16 chars
when required.

I will regenerate the same tables, but with actual lines instead of descriptions.

Because this is long, I will deliver them in four clean batches:

1. Left Justification Table

2. Right Justification Table

3. Centre Justification Table

4. Fully Justified Table + Universal Table

 1 — LEFT JUSTIFICATION (with * + ·)

Width = 16.
Left justify = words separated by a single space, no padding on right.

Test Input
Expected Output (Left-
Justified)

Likely From Your Code

L1
Hello world from
Java

Hello world from
Java

Multiple spaces treated as tokens →
messy wrapping

L2 abcdefghij xyz abcdefghij xyz OK or rollback glitch

L3 toolongword test ERROR (too long word) Correctly triggers exit

L4 Hello world ***Hello world
Your code mis-applies * to next lines
too

L5 A B C D E F G A B C D E F G Occasional duplicated tokens

 2 — RIGHT JUSTIFICATION (with * + ·)

Width = 16.
Right justify = fill left side with ·.

Example rule: "Hello" → ··········Hello

Test Input
Expected Right-Justified
Output

Likely From Your Code

R1 hi to you Line1: ········hi to you Padding miscalculated

R2 Amit ············Amit Sometimes division error (words-1)

R3
short test
line

··short test line
Might push over 16 due to truncation
rules

R4 hello world ········hello world Multiple spaces break tokenizer

 3 — CENTRE JUSTIFICATION (with * + ·)

Centred to width 16.
Padding uses · on both sides.

Test Input Expected Centered Output Likely From Your Code

C1 Java ······Java······ Tends to over/under pad

C2 a b c d ··a b c d·· Re-centering causes doubled padding

C3 word word ····word word···· Extra “layers” of padding inserted

C4 test· test CENTERED Tokenizer splits at · → corruption

 4 — FULL JUSTIFICATION (with * + ·)

For full justify:

• All lines except last must reach length 16 using · between words.

• Last line = left justify.

Test Input
Expected Fully-Justified
Output

Likely From Your Code

F1 The quick brown fox
The··quick··brown
fox

Rollback produces misaligned
lines

F2
This is a long
sentence that wraps

Many lines fully justified Padding leaks from earlier lines

F3 word word (no justify)
Your code adds padding
(incorrectly)

F4 a b c treat as a b c → distribute
Your code treats multiple spaces
as separate tokens

 5 — UNIVERSAL TEST CASES (apply to ALL justification types)

I now include actual expected lines.

Test Input Expected Output Your Code Likely Output

U1 "" "" "" or "null" printed

U2 " " "*" or blank Incorrect padding logic

U3 " " "*******" Mis-justifies spaces as words

U4 "###" "###" (justification literal) Mode-independent anomalies

U5 "abc###" "abc" Justify code thinks # is word separator

U6 "abc"
"abc" (mode-dependent
padding)

Usually correct

U7 "#"
"" (remove ineffective
backspace)

Your code throws out-of-bounds

U8 "abc#" "ab"
Justification tries to format leftover
incomplete line

